
Nature inspired computational offloading in fog-cloud
of things ecosystem for smart city applications.

Adam A. Alli

Islamic University of Technology

Magombe Yasin

Islamic University of Technology

Muhammad Mahbub Alam

Islamic University of Technology

Abstract

Studies leading to optimization of resources and applications in the fog-cloud

of things ecosystems have gained importance. This is because these studies

form the basis upon which improved performance of Internet of Things(IoT)

infrastructure can be realized. In this study, we explore heuristic approach

that permits offloading to optimal offsite fog by developing modified dynamic

PSO(mDyPSO) mechanism. We compared our results with the traditional

simple PSO(SiPSO). Our simulation results show that mDyPSO out performs

SiPSO in terms of application latency, network usage and energy utilization. We

note that our mDyPSO offloading mechanism improves network performance up

to one third. We conclude that mDyPSO mechanism performs well in fluctu-

ating topology. This further proves that considering multiple computational

parameters to modify PSO yield better offloading Results.

Keywords: Computational offloading, fog computing, particle swarm

optimization, fog-cloud of things.

1. Introduction

The Internet of Things (IoT) industry has quickly expanded and revealed

more opportunities to improve Quality of Service (QoS) in industries, govern-

Preprint submitted to Elsevier August 8, 2024



ments, and businesses through a connection paradigm that allows anything, any-

where to exploit connectivity to attain desired services[1, 2]. The IoT ecosystems5

provide powerful platforms that influence intelligent systems in the automation

of factories, education, military, medical care, surveillance, transportation, etc.

Embedding the Internet of Things alongside Artificial Intelligence, data analyt-

ics, and large language models has enabled the development of high-performance

systems that have upgraded future prospects of applications in cities[3], social10

media[4], education [5], manufacturing, the environment,space exploration, etc.

[6, 7]. Even if there is tremendous performance improvement in many systems

developed today as a result of adopting IoT, the performance of most of the sys-

tems developed is affected by i) the nature of connectivity, ii) the characteristics

of applications that run on them, iii) the features of the platform that host the15

applications, and iv) the configurations of the IoT systems. Undistinguishably,

the limitations such as uncertainty of IoT device’s behavior, nature of opera-

tions as influenced by changing physical world, and finding optimal solutions

that map applications to the optimal remote platform for processing are largely

unresolved[8, 9].20

IoT systems performance can be improved by extending the service of la-

tency and security-sensitive applications to a remote location through fogging

[10]. To effectively exploit fogging the challenge of selecting optimal location in

the network to which tasks may be mapped in a constantly dynamic environ-

ment to achieve minimized latency, improve inter fog node communication and25

achieve better load balancing is still a challenge, moreover, minimized resource

utilization in fog-cloud of things ecosystems is another important problem to

study[11, 12].

Among the important problems to be resolved in computational offload-

ing solutions is finding an appropriate offsite infrastructure to which resource-30

constrained user terminals in the fog-cloud of things ecosystems may offload

complex applications so as to improve the general performance of the IoT

ecosystems. Offloading process improves performance by reducing program

turnaround and increasing system throughput [13]. This is done by minimiz-

2



ing communication overheads and maximizing resources utilization across the35

fog nodes. Inopportunely, there exist a trade-off in achieving an appropriate

offsite infrastructure with sufficient resources to offload task(s) and minimizing

intra-infrastructure communication that achieves sufficient turnaround required

by IoT applications. This trade-off makes this problem NP-complete [14, 15].

NP-complete problems have no optimal solution in polynomial time; therefore,40

they may yield better solutions when heuristic techniques are used.

From Solutions proposed in the literature, a number of optimization tech-

niques have been used to accomplish computational offloading in the IoT-fog

ecosystems. For instance, Zhou et al. in [16] explored a contract-matching ap-

proach to task assignment and resource allocation in Vehicular Fog Computing45

(VFC). In their study, they proposed an efficient incentive mechanism based

on contracts. They further transformed the task assignment into a two-sided

matching between vehicles and user equipment. From their numerical result,

the matching algorithm proposed was observed to improve performance. De

Jong et. al. [17] proposed a deterministic delay constrained task partitioning50

as a mechanism to solve offloading decision. In their study, they highlighted

the previous studies in which algorithms based on integer linear programming

and stochastic analysis formulation were seen to under perform. They observe

these mechanisms didn’t guarantee polynomial-time convergence. To improve

the performance of the system, they proposed a ”deterministic approach”, a55

proposal that guarantees polynomial convergence.

Recently, a number of heuristic mechanisms have been proposed for example

ant colony mechanism was proposed in [18], they formulate multi-tasks schedul-

ing as an optimization . Their optimization objective was to maximize profit

and constraints. Their proposals performed better than previous explored mech-60

anisms based on deterministic methods. In our previous work in [8] we proposed

a pipeline of machine learning mechanisms to perform computational offloading.

Amongst the mechanisms that was used in the pipeline to facilitate selection of

suitable fog node for computational offloading was Particle Swarm Optimization

(PSO).65

3



We assumed during the offloading process the network conditions and re-

sources utilization remained unchanged. This study considered a Simple PSO(SiPSO)

mechanism in which for every offloading scenario in a cluster there arises one

peak fog that provides maximum processing power and other resources. This

peak node is the one considered the most suitable candidate to execute an70

offloading process. The results of this study enumerated considerable improve-

ment in resource, throughput, and energy utilization. Further there was consid-

erable improvement in response time. In the same study, dynamic nature of IoT

environment that resulted in many IoT devices that may initiate offloading at

the same time was considered, but clustered nature of Fog-cloud of things which75

could result in multiple topology, different underlying topological functions and

batch offloading at diverse points in the network was not considered. Again,

for simplicity we did not consider multiple fogs that may arise due to resource

fluctuation in the network. Naturally, multiple offloading and varying availabil-

ity of task processing resources at the offloading points on fog-cloud of things80

network may provide numerous optimum fog that may offer better offloading

performance, or make the offloading positions actively change. This is a shifting

fog-peak .

The shifting fog-peak results in the peak fogs to gain or lose resources re-

quired to process offloading dynamically, this activity makes the algorithm fail85

to converge, hence requiring the algorithm to diverge and re-converge so as to

find the optimum fog. And, most often when using traditional SiPSO the per-

sonal best and global best may change resulting in memory loss. Looking at the

application of PSO proposed in our previous studies in [8], we intent to extend

the proposed mechanism to include a dynamic selection considering multiple90

clusters. Our proposal takes care of changing dynamic that may offer moving

maxima fogs during the offloading processes. This study continues the effort to

explore PSO mechanisms and its variations for different offloading conditions in

dynamic IoT-fog environment.

The paper therefore, aimed at designing and developing a modified dynamic95

particle swarm optimisation algorithm for computational offloading in the fog-

4



cloud of things ecosystem. During the study an evaluation of our algorithm in

terms of latency, network utilization and energy consumption was done. Sec-

ondly, a comparison of the results obtained through simulation of mDyPSO and

SiPSO is completed and conclusion drawn. To achieve the aim of the study we100

i) performed a classification of computational offloading strategies. This en-

abled us to observe how experts have applied them to solve offloading and

other related solutions,

ii) developed and designed modified Dynamic Particle Swarm Optimisation

(mDyPSO) algorithm for computational offloading in a clustered Fog of105

things ecosystem,

iii) performed an evaluation of the developed mDyPSO algorithm and tested

its performance against Simple Particle Swarm Optimisation.

The remainder of the paper is organized as follows: Section 2 presents review

of related literature in terms of offloading technologies, application of nature110

inspired algorithm for computational offloading and classes of computational

offloading strategies as they appear in literature. Section 3 and 4, presents the

proposed system, the network model, formulation of the optimisation framework

and modified Dynamic Particle Swarm Optimisation offloading Mechanism. In

section 5, the simulation results are presented and compared to results of SiPSO.115

Conclusion of the study is drawn in section 6.

2. Review of related works

2.1. Offloading in the fog computing ecosystem

Fog computing paradigm provides data, compute, application and services

to the user at the edge [19]. Fog computing is promoted by scenario that require120

fast and reliable computing closer to the source of data such as in autonomous

systems, smart city applications, smart health care, smart infrastructure and

disaster management systems. Fog computing is characterised by low latency

computing closer to the edge of the network. In addition, they use reliable pro-

tocols, provide easy and affordable installations. Also they consist of slightly125

5



powerful devices that contain programmable function to allow accommodation

of multiple applications. The Fog-cloud of things infrastructure that supports

offloading processes run in versatile operating environment that calls for process-

ing big data using powerful artificial intelligence applications. This phenomena

may result in the device at the edge to fail handling the application. Besides,130

IoT devices at the edge are designed to handle very powerful application but

come with small battery capacity, this therefore, calls for a mechanism that

should allow devices at the edge to conserve energy. Fog technologies are often

designed to conserve resources(processing power, energy and memory) by devel-

oping mechanisms that accept the edge devices to process active tasks generated135

by IoT and provide both trust and security.

Fog-cloud of things paradigm provides effective solutions to eliminate latency

caused by physical distance between the cloud and devices in request of service

coupled with huge volumes of data along the service path. Additionally, they

enable organisations to save bandwidth and mitigate network congestion given140

that essential storage and computing can be provided along the edge[3, 20, 21].

Though the fog is viewed as Superior technology that will increase the efficiency

of a network through mechanism such as computational offloading, they are

deterred by their complexity and expensiveness due to their distributed nature.

Their implementation calls for well defined scope in addition to equipment,145

applications and resources to meet the objective of adoption[22, 23]. Along

with their location at the edge, their mobility make them vulnerable to security

concerns. Lastly, their processing capacity may require data reduction which

may result in partial data processing. Partial data processing at the edge limits

their capacity to function in a similar way such as the cloud infrastructure in150

an intensive big data environment.

To achieve computational offloading at the fog the middle ware system should

partition the offloadable tasks, present the task for processing at the host fog

device and make an offloading decision. The computational offloading is based

on if the ecosystem; (i) support offloading (ii) benefits from the offloading pro-155

cess, and (iii) if the resources are not available to process the application tasks

6



locally [24].

Authors in [25] presented three classes of archetypes that defines computa-

tional offloading strategies in IoT-cloud ecosystem. They include homogeneous,

heterogeneous and neutral models. To allow for offloading using homogeneous160

model, the run-time environment must be implemented on both the IoT device

and the Fog/cloud infrastructure. This configuration enables the IoT to execute

its task independent of network connectivity and Fog/cloud in situations when

offloading is not necessary. The results of execution of tasks in this model are

not compromised Offloading only happens when it is suitable and unavoidable.165

On the other hand, heterogeneous offloading models require that the run-time

environment implementation is simpler and lighter for the IoT devices and com-

plete for the fog/cloud environment. This enables the IoT devices to execute

their own task but the result may not be as good as the one produced by the

fog/cloud run-time environment. During offloading, input data is transmitted170

to the server and result of the computation received. Whereas, the neutral mod-

els does not require the run-time environment to be installed on the IoT-device

during task outsourcing. Therefore, the IoT device must always consult with

the fog/cloud to execute offloading. In this model IoT can not execute offload-

ing independent of network connectivity and fog/cloud connection. Generally175

speaking implementation of computational offloading solution take one of the

above three forms.

2.1.1. offloading Decision

The ability of the IoT devices or smart gateway to initiate a decision is

regarded as an offloading decision. The decision occurs after an evaluation of180

application needs to warrant offloading. The evaluation is done in terms of data

type, data size, power of devices, status of activities at the initiation point,

intermediate nodes, and the end node. Furthermore, the need to improve per-

formance of the IoT ecosystem is at the heart of offloading decision strategy. An

offloading decision is passed subject to whether the application can benefit from185

offloading in terms of the overall performance of the system. Also, an evaluation

7



to determine if data, its code or its application require to be offloaded. for every

offloading strategy the destination to where an offloading request shall be pro-

cessed is critical for a rational offload decision [24]. sometimes it is important to

consider the portion of data that should be offloaded. Finally, offloading strat-190

egy used to perform offloading is critical for offloading. Most often offloading

decisions are taken by middleware installed over the top of smart device.

The decision is held based on whether the application at hand i) needs

extra computational resources in excess of the hosting device, ii) if it is latency

sensitive, iii) if it is security or privacy sensitive, iv) does it require its data195

to be stored on storage space in excess to what the hosting device has, v) if

the application at hand is demanding such that it’s execution may degrade the

performance of the system during operation, and, vi) does offloading improve the

general quality of service of the whole IoT system. Other means through which

an offloading decision may be necessary is if offloading is supposed to improve200

infrastructure utilization as observed in load balancing, parallel processing and

distributed computing.

2.1.2. Application task partitioning

Application task partitioning is another serious activity performed in prepa-

ration for offloading. It involves dividing an application tasks into subsequent205

chunks that can be executed either on a client device or the server. In a number

of studies authors have shown that a good design strategy towards an optimum

partitioning solution can affect resources utilization at run time. Additionally,

levels of granularity affect compatibility, offloading, and performance in general

[26]. Partitioning mechanisms can be static, dynamic or hybrid. Hybrid mech-210

anism the bridges between adaptability to offloading conditions and balancing

cost of performance.

Li et al. in [27] presented a partition scheme at a procedure call level. Their

solution is based on a cost graph. they modelled the behaviour of the task

assignment during offloading. In this study, the authors explored the branch215

and bound mechanism for task partitioning and assignment. Their mechanism

8



implemented pruned heuristic component that improved its performance of ex-

pensive branch and bound mechanism considerably. Gao at al. in [28] proposed

a layered computational strategy that performed partitioning of tasks based on

deep neural networks. In their study joint optimisation design was achieved.220

This design strategy minimised latency by optimising task allocation hence im-

proving the performance of offloading mechanism. In another study by Jianhui

et al.[29], they illustrated that when portioning is done at both the mobile device

and on the remote device, processing latency is minimised. The above studies

confirms that partitioning of task during or before the offloading process is an225

important factor. In our study, we consider the first partitioning occurs at the

IoT device. Here the task is partitioned such that a portion that is processed on

the local device is considered for offloading and further partitioning may occur

at the smart gateway so that the task may be processed by multiple Fogs.

2.1.3. Preparation230

During the preparation stage actions that are necessary to support successful

optimal offloading performance are finalized. Three events are important here i.e

i) selection of destination offsite location where offloading will occur, ii) Transfer

and installation of code, iii) and transfer of data to and from the offload site

[30]. Preparation is done in an effort to initialize the offloaded process on the235

offsite environment. [31].

Mitsis et al. in [32] showed the of importance well designed selection mecha-

nism. In their simulation study they proposed a two component data offloading

and MEC server selection algorithm based on stochastic learning automata.

Their mechanism scored sufficient performance improvement in realizing opti-240

mal offloading and pricing. Therefore,in our study we opt to develop mDyPSO

in a Fog-cloud of things environment to improve performance by using PSO.

2.2. Nature inspired algorithm for computational offloading and related problems

The dynamic nature of applications, computational and data transactions

that are supported by IoT-Fog-cloud ecosystems inspire the use of evolutionary245

9



algorithms based on either genetic algorithms or swarm intelligence. Yang et

al. in [33] performed an analysis of nature inspired algorithms and their ap-

plications. In their study, they elaborated the two broad categories of nature

inspired algorithms falling in procedure based and equation based. They further

provided examples of such algorithms to include Deferential Evolutionary(DE),250

Particle Swarm Optimisation(PSO), fire-fry algorithm, Bat algorithm, Cuckoo

search algorithm etc.

Also studies in [34] performed a comparative study of nature inspired al-

gorithm on travelling salesman problem to show how they provide platform to

solving combinatorial optimization. These algorithms provide diverse opportu-255

nities to solving many problems that arise in the IoT-Fog ecosystems except

for lack of well-formed frameworks to enable a proper consideration of their ef-

ficiency, effectiveness and their robustness in the new computing environment.

In this work we are in efforts to explore PSO for offloading mechanism in IoT

environment.260

PSO is principally based on social behavior of animals [35]. In a PSO system

multiple solutions co-exist and collaborate by iteratively changing their current

position until an optimum solution is achieved. Each set of candidate solutions

are known as particles. In a bid to find an optimal solution in a search space

of D dimension, the particles fly around adjusting their position in accordance

with his personal experience (Pb) and neighbor particles’ experience (Pg). Each

particle preserves a memory of its own experience and best experience of the

neighbourhood. PSO combines particle dynamics and information sharing to

derive a powerful heuristic optimization tool. The canonical PSO achieves op-

timisation through the following two equation 1 and 2

Vij(t+1) = ωVij(t) +C1× r1× (Pb(i,j)−Xij(t)) +C2× r2× (Pg −Xij(t)) (1)

Xij(t+ 1) = Xij(t)) + Vij(t+ 1) (2)

where Vij(t + 1) and Vij(t) are current and previous velocity respectively,

whereas Xij(t+1) and Xij(t) are current and the previous particle positions, c1

10



and c2 are cognitive and acceleration coefficients, r1 and r2 are random numbers

between 0 and 1, ω is the initial coefficients, t are the number of iterations [36]

and lastly, Pb(i,j) and Pg are personal and global best respectively [37].265

Originally, PSO has been thought to solve optimization problems that were

continuous in nature . Recently, PSO has attracted interest in solving both dis-

crete and combinatorial problems with small modification. Resendo et al. in [38]

presented PSO with path rethinking for combinatorial optimization problems.

In their work, they presented a PSO algorithm in which the particle was viewed

to be guided by three components. These components include i) the component

that is guided by it’s own way k1, ii) the other component that allows it to get

to its previous best solution k2 and iii) the component that allows it to align

with the global solution of the whole swarm k3. Component k1 facilitates the

local search, where as k2 and k3 helps move the particle to the new position.

grouping the components into functional partitions allows them to create the

local search and the path rethinking dimension of the velocity equation in 1.

From their formulation the PSO equations can be formed as in eqn. 3 and 4 as

follows

Vij(t+ 1) = ωk1(t) + C1 × r1 × (K2(t)) + C2 × r2 × (k3(t)) (3)

Xij(t+ 1) = Xij(t)) + Vij(t+ 1) (4)

in the eqn. 3 ωk1(t) represents the local search and the rest form the path

rethinking. They Performed experiment and showed that their result compared

well on averages with other solution presented in literature. This study gives

evidence that hybridization is one of the ways of attaining a competitive discrete

PSO.270

Another study by Gupta et al. [39], proposed a hybrid Genetic Algorithm-

Particle swarm optimization (GA-PSO) to solve travelling salesman problem.

In their algorithm they take advantage of fast convergence rate of PSO and

robustness of GA. Their result show that hybrid GA-PSO achieves better com-

putational average mean time and low mean error, thus attaining superior per-275

11



formance. Mohammed et al. [40] investigated the application of PSO to solve

the shortest path problem. They experimented their work of different network

topology. In there study good success of discovering the shortest path was

realized as compared to GA.

Authors in [41] and [42] presented PSO for transport problem and assign-

ment problem respectively. In both studies they presented tractable solutions

to the problems in questions. [41] noted in there study that the PSO traditional

updating rule does not hold for the constrains that result from formation of

transport problem. Therefore, they presented an alternative updating rule that

suites transport problem as stated in equation 5 and equation 6

Vij(t+ 1) =

 r1 × (Pb(t)−X(t)) + r2 × (Pg(t)−X(t)), t = 0

r3 × V ij(t) + r4(Pb(t)−Xij(t)) + r2 × (Pg(t)−X(t)), t > 0

(5)

Xij(t+ 1) = V ij(t+ 1) +Xij(t) (6)

They considered the following conditions to overcome the shortcoming of the280

traditional PSO to solve TP problems

i) X(t) and Vij is viewed in n×m dimension

ii) r1, r2, r3, r4 are random number between 0 and 1

iii) r1, r2 r1 = U(0, 1), r2 = 1− r1

iv) r3, r4 r1 = U [0.8, 1), r4 = 1− r3285

v) if Pb(t) = X(t) AND Pg(t)! = X(t) then r1 = 1

vi) if Pb(t)! = X(t) AND Pg(t) = X(t) then r2 = 1

vii) if Pb(t) = X(t) AND Pg(t) = X(t) then r3 = 1.

Our study is based on the assignment of tasks to a fog that has capacity. This

problem is viewed as a version of the TP problem.290

Lastly, Rafique et al. presented Bio-inspired hybrid strategy based on PSO

to schedule tasks and Cat swarm optimisation (CSO) algorithm to manage re-

sources. Results of their study show with slight modification of the PSO and

12



CSO NBIHA [43] balances load well amongst Fog nodes, hence presenting an

efficient resource allocation strategy. we deduce from this study that further295

tuning of PSO would yield improved performance in the Fog-cloud of things

environment. Drawing from the experiences of the above authors, we build con-

fidence that our proposal provides a better platform to solve offloading problems,

which consist of the selection of optimal fog, placement of tasks for optimisation,

and balancing tasks amongst appropriate fogs.300

2.3. Classes of computational offloading strategies

13



S
n
o.

P
ro
p
os
ed

offl
oa
d
in
g

st
ra
te
gy

P
ri
n
ci
p
le

L
im

it
a
ti
o
n

E
d
g
e

te
ch
-

n
o
lo
g
y

R
ef
er
en
ce

1
O
ffl
oa
d
in
g

fo
r

E
n
-

er
gy

m
in
im

iz
in
g

in

m
ob

il
e-
ed
ge

cl
ou

d

co
m
p
u
ti
n
g

F
or
m
u
la
te
d
a
s
jo
in
t
en
er
g
y
a
n
d
T
a
sk

co
m
p
le
ti
o
n

m
in
im

iz
a
ti
o
n

p
ro
b
le
m

fo
r
m
o
b
il
e
u
se
rs
.

m
o
b
il
e

u
se
rs

ar
e
co
n
st
ra
in
ed

b
y

b
o
th

ti
m
e
a
n
d

en
er
g
y

co
n
su
m
p
ti
o
n
.
F
o
rm

ed
a
s
a
co
n
v
ex

o
p
ti
m
is
a
ti
o
n

p
ro
b
le
m

fo
rm

a
ti
o
n

re
su
lt
s
in

co
m
-

p
le
x

sy
st
em

th
a
t
d
iffi

cu
lt

to
so
lv
e

fo
r

d
is
tr
ib
u
te
d

F
o
g
ec
o
sy
st
em

m
o
b
il
e
E
d
g
e,

cl
o
u
d

[4
4
,
4
5
,
4
6
]

2
T
as
k

offl
oa
d
in
g

b
as
ed

on
in
te
ge
r

p
ro
gr
am

m
in
g

F
or
m
u
la
te
d
a
s
m
ix
ed

in
te
g
er

n
o
n
-l
in
ea
r
p
ro
g
ra
m
-

m
in
g
p
ro
b
le
m
.
th
e
p
ro
b
le
m

is
o
ft
en

tr
a
n
sf
o
rm

ed

su
b
p
ro
b
le
m
s
to

tu
n
e
th
e
re
su
lt
s
o
f
th
e
sy
st
em

D
iffi

cu
lt
y

in
re
p
re
se
n
ti
n
g

h
ig
h

d
im

en
si
o
n
s

o
f

d
is
-

tr
ib
u
te
d

sy
st
em

en
v
ir
o
n
-

m
en
t
cr
ea
te
d

b
y

th
e

fo
g

sy
st
em

S
o
ft
w
a
re
-

d
efi
n
ed

m
o
b
il
e
ed
g
e

[4
7
,
4
8
,
4
5
]

3
B
io
-i
n
sp
ir
ed

ta
sk

sc
h
ed
u
li
n
g

an
d

re
so
u
rc
e
al
lo
ca
ti
on

.

F
or
m
u
la
te
d
a
s
o
p
ti
m
iz
a
ti
o
n
p
ro
b
le
m
s
to

b
e
so
lv
ed

u
si
n
g

b
io
-i
n
sp
ir
ed

a
lg
o
ri
th
m
s.

A
p
p
ro
a
ch
es

in
-

cl
u
d
e
m
o
d
ifi
ca
ti
o
n

o
f
P
S
O
,
C
S
O
,
B
ee

sw
a
rm

s,

et
c.

T
h
es
e
m
et
h
o
d
s
a
re

u
se
d
to

sc
h
ed
u
le

ta
sk
s,

re
so
u
rc
es
,
a
n
d
d
em

a
n
d
s

d
iffi

cu
lt
y

in
m
a
tc
h
in
g

re
-

so
u
rc
es

fo
r
co
m
p
u
ta
ti
o
n

F
o
g

co
m
p
u
t-

in
g

[4
9
,
5
0
,
5
1
]

14



S
n
o.

P
ro
p
os
ed

offl
oa
d
in
g

st
ra
te
gy

P
ri
n
ci
p
le

L
im

it
a
ti
o
n

E
d
g
e

te
ch
-

n
o
lo
g
y

R
ef
er
en
ce

4
M
ac
h
in
e

le
ar
n
in
g-

b
as
ed

offl
oa
d
in
g

F
or
m
u
la
te
d

b
a
se
d

o
n

m
a
ch
in
e

le
a
rn
in
g

a
p
-

p
ro
ac
h
es
.

T
h
ey

in
cl
u
d
e

su
p
er
v
is
ed
,

se
m
i-

su
p
er
v
is
ed

a
n
d

su
p
er
v
is
ed

A
p
p
ro
a
ch
es
.

D
ee
p

le
ar
n
in
g

a
n
d

re
in
fo
rc
em

en
t
le
a
rn
in
g

h
av
e
b
ee
n

w
id
el
y

p
ro
p
o
se
d

in
li
te
ra
tu
re
.

T
h
es
e
m
et
h
o
d
s

h
av
e
sh
ow

n
th
a
t
re
li
a
b
le

o
ffl
o
a
d
in
g

th
a
t
m
a
x
i-

m
iz
es

n
et
w
o
rk

p
er
fo
rm

a
n
ce

a
n
d
im

p
ro
ve
s
sy
st
em

u
ti
li
ty

is
p
o
ss
ib
le

T
h
ey

su
ff
er

fr
o
m

h
ea
v
y

tr
a
in
in
g

re
q
u
ir
em

en
ts
,

la
ck

o
f
ex
p
la
in
a
b
il
it
y,

a
n
d

in
te
ll
ig
en
ce
.

O
ft
en

th
e

u
n
d
er
ly
in
g

sy
st
em

s
a
re

co
m
p
le
x
to

d
eb
u
g

F
o
g

M
E
C
,

C
lo
u
d
,
M
is
t

[5
2
,
5
3
,
5
4
]

5
S
to
ch
as
ti
c

offl
oa
d
-

in
g

F
or
m
u
la
te
d
w
it
h
a
ss
o
ci
a
ti
o
n
o
f
ra
n
d
o
m
n
es
s
in

th
e

sy
st
em

th
a
t
g
en
er
a
te
s
th
e
ta
sk
s,

o
r
th
e
sy
st
em

s

th
at

p
ro
ce
ss
es

th
e
o
ffl
o
a
d
.

C
o
m
m
u
n
ic
a
ti
o
n

b
e-

tw
ee
n
th
e
n
o
d
es

m
ay

a
ls
o
b
e
ra
n
d
o
m
.
T
h
e
su
c-

ce
ss

of
st
o
ch
a
st
ic

sy
st
em

s
a
re

m
a
in
ly

d
ep

en
d
a
n
t

on
ta
sk

u
p
lo
a
d
s
a
n
d
d
ow

n
lo
a
d
p
o
ss
ib
il
it
ie
s

S
to
ch
a
st
ic

m
o
d
el
s
h
el
p
in

le
a
rn
in
g
th
e
b
eh
av
io
u
r
o
f

o
ffl
o
a
d
in
g

a
n
d

co
m
p
le
x
i-

ti
es

in
v
o
lv
es

b
u
t,

su
ff
er

fr
o
m

co
n
ve
rg
en
ce

is
su
es

w
h
en

th
e

sy
st
em

s
u
n
d
er

st
u
d
y

b
ec
o
m
e
la
rg
er
,
d
y
-

n
a
m
ic

a
n
d
co
m
p
le
x

F
o
g
,
M
ec

[5
5
,
5
6
,
5
7
]

T
a
b
le

1
:
T
a
b
le

sh
o
w
in
g
st
a
te

o
f
a
rt

st
ra
te
g
ie
s
fo
r
co

m
p
u
ta
ti
o
n
a
l
o
ffl
o
a
d
in
g

15



In the table 1, we present five state of art proposed classes for computational

offloading. Each of the classes are based on principle that has been stated against

them. In addition, the limitation of each of the proposal have been illustrated.

We note that each of the strategies provide an advantage over another.305

3. Formal problem formulation

3.1. Network model

Figure 1 shows the network model proposed in this study. We consider a

moderately large IoT network of N devices. The devices in the network are

grouped into smaller C clusters. Ci is the i
th cluster and i is a positive number.310

This model consists of p IoT devices at the lower layer, q Fog nodes organized

in the multi-hierarchical middle layer and r clouds devices in the upper layer.

In the model, the number of IoT devices, fog devices and the cloud devices are

such that p >> q > r. All IoT devices in a single cluster are connected to the

upper layers through the smart gateways. The fogs are in turn connected to the315

cloud infrastructure consisting of private clouds, public clouds or hybrid clouds

systems. All packets shall enter or exit the cluster through the smart gateway

(Gi). Each IoT device I belongs to some cluster Ci.

Application tasks(Aτ) arrives to the IoT randomly and periodically. Each

of the Aτ generated is forwarded to Gi when offloading is required. These320

tasks are associated with resource requirements. If the generated application

tasks cannot be completed in the required sums of time slot (t) at I, an offload

decision is initiated or the task is dropped [8]. The task generated at this point

may be delay, resource constrained or demand driven. That means the tasks

must be completed within specified time bound or the tasks demands processing325

requirements that are not available at I to complete the task. To this end, the

offloading decision may be to execute the tasks in whole on a local device or

offload the task(s) to fog device(s) in the next layer. Moreover, the offload

decision might support further offloading to the cloud.

16



Figure 1: showing Network Model

Let us consider 0 ≤ λ ≤ 1 to be a fraction of the application tasks that shall330

be offloaded during offloading process. If λ = 0 then the task is executed in

totality at point of generation that is the local device I else if λ = 1 then the

task is offloaded in whole to the fog except for the none offloadable parts of the

task, otherwise a portion λ of the task is offloaded to the fog and 1− λ will be

executed on the local device [8].335

Each Task (Aτ) generated is characterized by input component (α), output

component (β) and computational component (γ). Thus Aτ is represented as a

tuple Aτ = {α, β, γ}. To offload Aτi to a fog j a considerable delay bound (δi)

is required. δ is the sum of transmission delays (δtr), queuing delay (δqd), fixed

processing delay ( δfd), packetization delay (δpd) and depacketization delays340

(δdd). Based on the the portion of data that may be offloaded a decision models

presented in table 2 may be chosen.

Let us denote fk to be the kth fog node to which an offload occurs at time slot

(ts); where, k = {1, 2, 3, . . . ,m} and m, is the maximum number of fog nodes in

the network organized in multi-hierarchy. Finally, the lower levels of the network345

are connected to the fog through smart gatewayGi. Fog nodes may be connected

to the cloud directly or indirectly through multiple sub-layers of Fogs devices.

17



The cloud has abundant resources but high latency requirement, therefore, if

any task is offloaded to the cloud it shall be executed at negligible execution

time. If a task is not executed by any fog, then the fog may perform additional350

offload to the cloud for complex part of the workload. In general, this framework

adopts that there exists Fog(s) that are capable of solving the computational

offload, therefore, offloading to the cloud may often be immaterial.

The computational offloading process happens in time slots. The time slots

contain three (3) time cycles as follows a) The assignment cycle (Tas), the time355

through which the tasks shall be received by the smart gateway of the cluster b)

The operational cycle (Top), the time cycle at which the PSO mechanism is run

to select the optimal fog platform to execute offloaded task. . . c) The dispatch

cycle (Tdi), the time cycle through which the results shall be received by the

IoT devices.

Figure 2: showing offloading Time slots

360

3.2. Problem statement

An IoT device Ii,j,k randomly generates application task(Aτi,j). Aτi,j consist

of offloadable part. If offloadable part does exist then Ii,j,k issues an offloading

request (Ork) through the smart gateway Gj . Gj forwards the request to the

selected Fog node fk which is considered optimal at the time of request. The365

selection process is driven by heuristic algorithm such that the selected Fog

node to which an offload process (opi,k) minimizes task allocation, latency and

response time. The offload process happens at the fog and uses fog resources

which include memory and processing power in terms of CPU cycles. In case

an offload process can not happen completely in one time slot, the process is370

postponed to next time slot as longer the latency constrain is maintained. Since

18



Figure 3: showing offloading process

the tasks are forwarded to the fog through the gateway, we assume at a certain

time(t) the gateway has at least one offloading requests. In addition, all the

offload requests are assembled at Gi. Our problem assumes that all the task

from the IoTs surrogate at the smart gateway. Again it is assumed that the375

cloud has unlimited resources but far from the IoT devices hence latency is

high. Our solution will only forward a task to cloud only when there is no fog

to solve the task. The main concern is to find a fog that executes offloaded

tasks available at the gateways at minimum latency and enables maximization

reservation of energy at the IoT devices.380

19



O
ffl
oa
d
in
g
d
ec
is
io
n
M
o
d
el

F
o
rm

u
la

D
ef
.
o
f
sy
m
b
o
ls

D
es
cr
ip
ti
o
n

L
o
ca
l
p
ro
ce
ss
in
g
m
o
d
el

τ l
p
=

(1
−
λ
)
×

Ω
i
o
t

f
i
o
t

i)
λ
is
th
e
fr
a
ct
io
n
o
f
w
o
rk

lo
a
d

th
a
t
is

o
ffl
o
a
d
ed
,

ii
)
Ω

io
t
is

w
o
rk

lo
a
d
g
en
er
a
te
d

a
t
th
e
Io
T
,

ii
i)

f i
o
t
is

th
e
p
ro
ce
ss
in
g
p
ow

er

o
f
th
e
Io
T

d
ev
ic
e

T
im

e
re
q
u
ir
ed

to
p
ro
ce
ss

a
fr
a
c-

ti
o
n

o
f
w
o
rk
lo
ad

g
en
er
a
te
d

a
t

Io
T

d
ev
ic
e
th
is

in
cl
u
d
es

U
se
r
in
-

te
rf
a
ce
s,

p
er
ip
h
er
a
l
m
a
n
a
g
em

en
t

p
ro
g
ra
m
s
et
c.

[8
,
5
8
,
5
9
]

P
ro
ce
ss
in
g
offl

oa
d
ed

w
or
k
lo
ad

at

th
e
F
og

τ l
p
=

λ
×

Ω
i
o
t

f
f
o
g

iv
)
f f

o
g
is

p
ro
ce
ss
in
g
p
ow

er
o
f

th
e
fo
g
p
ro
ce
ss
o
r

T
im

e
re
q
u
ir
ed

to
p
ro
ce
ss

a
fr
a
c-

ti
o
n
o
f
a
w
o
rk
lo
a
d
g
en
er
a
te
d
a
t

Io
T

a
n
d
o
ffl
o
a
d
ed

to
th
e
F
o
g
fo
r

p
ro
ce
ss
in
g
.
[8
,
58
,
5
9
]

T
ra
n
sm

is
si
on

T
im

e
to

se
le
ct
ed

fo
g

τ t
f
=

λ
×

Ω
i
o
t

β
t
f

β
tf

=
is
th
e
tr
a
n
sm

is
si
o
n
ra
te

o
n

th
e
li
n
k
(s
)
b
et
w
ee
n
th
e
se
le
ct
ed

fo
g
n
o
d
e
a
n
d
th
e
Io
T

d
ev
ic
e

A
m
o
u
n
t

o
f

ti
m
e

re
q
u
ir
ed

to

tr
a
n
sm

it
th
e
o
ffl
o
a
d
ed

w
o
rk
lo
a
d

to
th
e
fo
g
d
ev
ic
e
[8
,
5
8
,
5
9
]

T
ra
n
sm

is
si
on

T
im

e
to

th
e
cl
ou

d
τ t

c
=

λ
×

Ω
i
o
t

β
t
c

β
tc
=

is
th
e
tr
a
n
sm

is
si
o
n
ra
te

o
n

th
e
li
n
k
(s
)
b
et
w
ee
n
th
e
se
le
ct
ed

cl
o
u
d
a
n
d
th
e
Io
T

d
ev
ic
e

A
m
o
u
n
t

o
f

ti
m
e

re
q
u
ir
ed

to

tr
a
n
sm

it
th
e
o
ffl
o
a
d
ed

w
o
rk
lo
a
d

to
th
e
cl
o
u
d
[8
,
5
8
,
5
9
]

T
a
b
le

2
:
sh

o
w
in
g
T
im

e
co

n
st
ru

ct
s
re
q
u
ir
ed

d
u
ri
n
g
o
ffl
o
a
d
in
g
p
ro
ce
ss

20



3.3. Formation of optimization framework

An optimization framework for computational offloading in clustered fog-

cloud of things is presented in this sub section. The optimisation framework

determines the optimal computational offloading strategy.

Optimisation related entities385

1. Gateway: From our model presented in figure 1, all IoT devices are as-

sociated with a smart Gateway forming a cluster, therefore all the tasks

generated from the lower levels of the model are surrogated by the gate-

way. In our optimisation framework, IoT devices are encapsulate by the

gateway.390

2. The Fog: This middle tier computing devices at the edge that is respon-

sible for computational offloading. In case none of the fogs in the clusters

can perform computation offloading, then the tasks are forwarded to the

upper tier of the network model.

3. The cloud: Form the upper tie computing environment that is responsi-395

ble for computational offloading if and only if there exists no fog from the

computing environment to perform computation offloading.

Overall objective function

Maximize Task allocation: TA =

G∑
j=1

Tj∑
i=0

F∑
k=1

xi,j,k (7)

subject to:

21



Symbols Description

gj The jth Gateway j = 1, 2...G

Ti,j The ith Task at jth Gateway i = 1, 2...Tj

fk The kth fog to which offloading is performed k = 1, 2...F

Di,j Maximum delay tolerance between the task Ti,j

di,j Delay experienced during the processing of task Ti,j

td Round trip time

tc Computational time at the fog

xi,j,k = {0, 1} Boolean indicator if xi,j,k = 1 then that fog is chosen.

this indicator is used to generate the assignment table

hjk Number of hope counts between gi and the selected fog

ld the average link delay

mij the memory requirement for tij

Mk the maximum available memory at the fk

ci,j the required processing power required for a task ti, j

Ck the maximum available processing power available at the Fog fk

Table 3: showing symbols used in formation of optimization framework

F∑
k=1

xi,j,k ≤ 1

i = 1, 2, ...Tj ; j = 1, 2, ...G

di,j,k ∗ xi,j,k ≤ Di,j,k, i = 1, 2, ...Tj ; j = 1, 2, ...G

mk ≤Mk, k = 1...F

ck ≤ Ck, k = 1...F

xi,j,k = {0, 1}

di,j = td + tc

= td is twice the delay between the selected fog and the gateway

td = 2× hj,k × ld

(8)

22



di,j,k = tc + 2× hj,k × ld

= delay assigned if ti,j is assigned to a fog fk

= xi,j,k × di,j,k ≤ Di,j

(9)

Resource requirement

i) Central Processing Unit (CPU) requirement for task ti,j is measured in

CPU cycles as follows

ck =

G∑
j=1

Tj∑
i=0

xi,j,k × cik ≤ Ck (10)

ii) Memory requirement for task ti,j is measured in bits as follows

mk =

G∑
j=1

Tj∑
i=0

xi,j,k ×mik ≤Mk (11)

4. The modified Dynamic PSO for computational offloading400

In this section, we present the mDyPSO A PSO motivated computational

offloading algorithm applied in multiple cluster topology of fog-cloud of things

ecosystem. This algorithm is based on dynamic particle swarm optimization

mechanism, which forms a basis of many selection and scheduling problems[60,

61]. Studies in [62, 63] proposed PSO mechanism to solve multi-objective prob-405

lems. Since this study involves Fog-cloud of things clustered in multiple domains

whose topology and search space may vary. It becomes central to treat the prob-

lem as a multi-objective particle swarm optimization problem.

4.1. Traditional Dynamic Particle Swarm Optimisation algorithm

The traditional particle swarm optimisation is best suited for problems that410

are represented in n-dimension space[8]. Using a particle with defined velocity,

acceleration and communication channels between them, they are made to drift

towards the best suited solutions known as the best fit among the other potential

solutions [42]. The dynamic variation of Particle swarm optimisation considers

23



that the swarm size may not be the same or the space consist of varying topology.415

Therefore in such a case acceleration is weighted by random term and average

of the fitness may be considered [64]. in algorithm 1 a dynamic particle swarm

optimisation is presented.

Method DyPSO():

noParticles← p = (1, 2, ...)

avaragefit← 0

currentfit← 0

fitness

personalBest← 0

bestF it← max(personalBestp)

globalBest← bestF it

for all the particles do

if currentF it ≤ avarageF it then

currentF it← avaragaF it

compute fitness

end

if personalBest ≤ fitness then

personalBest← fitness

end

end

select a particle with bestF it as globalBest

for All the particles do

Compute particleV elocity using equation 5

compute particlePosition using equation 6

end

End DyPSO

Algorithm 1: TradDyPSO

24



4.2. Dynamic Task allocation algorithm420

Algorithm 3 presents the dynamic task allocation in the fog-cloud of thing

ecosystem. Application tasks arrive at the gateway for offloading to the optimal-

fog that provides sufficient resources to execute the task with minimum la-

tency.For each of the cluster mDyPSO is initiated to determine an optimal fog

node for a cluster. The best fit fog amongst all the clusters is assigned the425

function of a global best fit to whom the tasks are allocated. If all the fogs are

busy and can not execute the tasks allocated in the threshold allocated the task

is forwarded for processing to the cloud.

Method Dynamic-task-allocation():

resource− bank ← 0

resource− required← 0

min− reserve sum− of − resources fog ← fog1, fog2, ...fogj

clustersize← m

cloud← cloud1, cloud2...

for all incoming application tasks Aτ1, Aτ2, Aτ3... do

for each of the clusters K do

local − optimal − fog ← DyPSO(fog)

if local-optimal-fog is better than global-optimal-fog then

global − optimal − fog ← local − optimal − fog

end

allocate-task(global-optimal-fog)

end

if all fogs are busy then

allocate-task(cloud)

end

end

End Dynamic-allocation

Algorithm 2: Dynamic Task allocation algorithm

25



Method mDyPSO():

local − optimal − fog ← 0

global − optimal − fog ← 0

fog ← fog1, fog2, ...fogj

gateway ← gw1, gw2, ...gwm

clustersize← m

cloud← cloud1, cloud2...

requiredmemory ← mi,j

availablememoryfog ←Mk

requiredcpucycle← cij

availablecpucyclesfog ←Mk

for each of the clusters i do

for all incoming application tasks Aτi,1, Aτi,2, Aτi,3... do

for each fog do

if mi,j −Mk ≤ 0 then

if ci,j − Ck ≤ 0 then

fk ← DyPSO(fog)

assign Aτijtofk

end

end

end

end

end

mDyPSO

Algorithm 3: Modified dynamic Particle Swarm Optimisation

26



5. Comparative study between SiPSO and mDyPSO430

5.1. Experimental environment and setting

5.1.1. System configuration

Name Description

Simulation tool IFogsim

Operating System Windows 10

Development Platform Eclipse IDE for Java Devlopers (2021-03)

Processor IntelCore i3 8th Generation 2.1GHz 2.3GHz

Installed Memory 16GB

Table 4: Showing the system configuration

Table 4 shows the system configuration and development environment. IFogSim

was used to develop and simulate our proposal. In addition, we run our sim-

ulation on a machine installed with windows 10, IntelCore i3 8th Generation435

2.1GHz and 16GB installed RAM Operating system and Eclipse IDE develop-

ment platform.

The choice of using IFogSim in this study is motivated by simplicity un-

derlying the it’s architecture in terms of application placement, load balancing,

resource application and network utilization[10]. Secondly, IFogSim is free and440

popular event driven simulation tool used modeling the IoT-fog environment.

the underlying architecture enables creation of physical, logical and management

components that constitute the fog-cloud of things ecosystem. IFogSim gives us

the capacity to evaluate resources management policies based on network usage,

energy consumption and other operational costs[65].445

5.1.2. simulation parameters

In our simulation, we consider number of IoT devices ranging from 60 to 70

devices per cluster. Each cluster is bound by a smart gateway. Further a hybrid

cloud and fog devices ranging from 2 to 5 was considered. Lastly, a simulation

area of 10000 and simulation area of 1200×200. Other parameters that included450

27



Item Description/number

Number of IoT nodes [60-70] nodes

Number of Fog nodes [2,3,4,5]

Number of cloud 1 hybrid cloud

No of application tasks [1,4,10,20,30,40,50,60,70,80]

Bandwidth 10000

simulation Area 1200 x 200

Table 5: Showing the simulation parameters

the task arrival rates, simulation time, traffic types, traffic arrival rates are set

to default setting.

5.2. Evaluation parameter

i) Application latency: - in this study we define application latency as the

total round trip taken by a data packet to travel to and from the IoT device.455

The lower the application latency the better the offloading strategy. Higher

application latency can strangle network reducing the performance.

ii) Network usage: - we define network usage as the amount of data that travel

back and forth across a network due IoT applications, the fog devices and

network users.460

iii) Energy consumed during application execution: This parameter refers to

total amount of energy consumed when an application is launched to exe-

cute on an IoT device. We note that IoT devices are often constrained by

battery life. The less the energy consumed the better the mechanism for

running the applications that may require intensive application.465

5.3. Application latency for mDyPSO as compared SiPSO

The graph in Fig 4 shows the application latency achieved by IoT devices

attached on a network that uses SiPSO mechanism and mDyPSO. From the data

collected through simulation the application latency scored by SiPSO is 31.61

ms and mDyPSO scored 21.61 ms. Application latency is concealed through470

28



Figure 4: showing application latency for mDyPSO and SiPSO

offloading mechanism, multi-tasking techniques. Consequently, well-designed

offloading algorithms for offloading can improve performance drastically. From

the above, therefore, we conclude that cautious design of mDyPSO improves

offloading performance by approximately one third.

5.4. Network Usage for mDyPSO as compared SiPSO475

The Figure 5shows the network usage for both SiPSO and mDyPSO. From

the graph, when numbers of application tasks are low, the network usage foe

both mechanisms does not differ significantly. As the number of application

tasks increase mDyPSO achieves better network usage than SiPSO. Since net-

work usage determines the amount of data that move back and forth across the480

network due to application and related devices on the network, we conclude

that mDyPSO is a better mechanism for computational offloading than SiPSO.

5.5. Energy consumption for mDyPSO as compared to SiPSO

The graph 6 above shows the energy consumption for offloading strategy

using SiPSO and mDyPSO. We observe that energy consumed during offload-485

29



Figure 5: showing network usage for both mDyPSO and SiPSO

Figure 6: showing energy consumption for both mDyPSO and SiPSO

30



ing while using mDyPSO strategy is less that energy consumed while using

SiPSO. Since the amount of energy relates to energy conserved, we conclude

that mDyPSO enable better energy conservation at the IoT device hence a

better offloading strategy.

6. Conclusion490

Fog computing aims at improving responsiveness of real time application

in the fog-cloud of things. In our study we conclude that Application latency

can be reduced through adoption of well-designed mechanism in the fog-cloud

of things infrastructure. Secondly, we achieve lower response by adapting com-

putational offloading at the edge through proper resource utilization and load495

balancing. Our Nature inspired computational offloading in clustered fog of

things ecosystem exhibits better network utilization as the network grows, a

typical characteristics of IoT networks. Further our study show that network

performance is reduced by one third, energy consumption is reserved and appli-

cation latency is moderately lower than earlier proposed mechanism in SiPSO.500

In future, we hope to explore models for computational offloading with hybrid

cloud in IoT ecosystem, 5G-enabled services for task offloading in fog-cloud of

things ecosystems and future perspectives for fog-cloud of things computing

cooperation.

References505

[1] C. Tang, S. Xia, Q. Li, W. Chen, W. Fang, Resource pooling in vehicular

fog computing, Journal of Cloud Computing 10 (1) (2021) 1–14.

[2] S. H. Asaba, A. A. Alli, S. A. Olawale, Y. Umar, A. Kasule, R. R.

Bwambale, Review of cloud computing framework for the implementation

of elearning systems, Uganda National Council of Higher Education Jounal.510

[3] A. A. Alli, K. Kassim, N. Mutwalibi, H. Hamid, L. Ibrahim, Secure fog-

cloud of things: Architectures, opportunities and challenges, in: Secure

Edge Computing, CRC Press, 2021, pp. 3–20.

31



[4] J. Kasadha, A. A. Alli, A. K. Basuuta, A. Mpoza, Social media taxation

and its impact on africa’s economic growth, Journal of Public Affairs (2019)515

e2004.

[5] M. Yasin, A. A. Alli, N. Mutwalibi, J. Kasadha, Video conferencing as a

teaching mode in higher educational institutions in uganda: teacher percep-

tion, International Journal of Smart Technology and Learning 3 (1) (2022)

46–66.520

[6] A. A. Alli, I. LWEMBAWO, F. MUGIGAYI, J. KASADHA, Teaching as

a service: An exploration of educational framework for technology driven

teaching for higher education institutions, in: 2024 IST-Africa Conference

(IST-Africa), IEEE, 2024, pp. 1–11.

[7] K. Kalinaki, W. Shafik, M. Masha, A. A. Alli, A review of artificial intelli-525

gence techniques for improved cloud and iot security, Emerging Technolo-

gies for Securing the Cloud and IoT (2024) 38–68.

[8] A. A. Alli, M. M. Alam, Secoff-fciot: Machine learning based secure offload-

ing in fog-cloud of things for smart city applications, Internet of Things 7

(2019) 100070.530

[9] J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of things (iot):

A vision, architectural elements, and future directions, Future generation

computer systems 29 (7) (2013) 1645–1660.

[10] A. A. Alli, M. M. Alam, The fog cloud of things: A survey on concepts,

architecture, standards, tools, and applications, Internet of Things (2020)535

100177.

[11] P. G. López, M. Sánchez-Artigas, G. Paŕıs, D. B. Pons, Á. R. Ollobar-

ren, D. A. Pinto, Comparison of faas orchestration systems, in: 2018

IEEE/ACM International Conference on Utility and Cloud Computing

Companion (UCC Companion), IEEE, 2018, pp. 148–153.540

32



[12] D. Van Le, C.-K. Tham, A deep reinforcement learning based offloading

scheme in ad-hoc mobile clouds, in: IEEE INFOCOM 2018-IEEE Confer-

ence on Computer Communications Workshops (INFOCOM WKSHPS),

IEEE, 2018, pp. 760–765.

[13] A. Salman, I. Ahmad, S. Al-Madani, Particle swarm optimization for task545

assignment problem, Microprocessors and Microsystems 26 (8) (2002) 363–

371.

[14] K. A. De Jong, W. M. Spears, Using genetic algorithms to solve np-

complete problems., in: ICGA, 1989, pp. 124–132.

[15] T. Q. Dinh, J. Tang, Q. D. La, T. Q. Quek, Offloading in mobile edge550

computing: Task allocation and computational frequency scaling, IEEE

Transactions on Communications 65 (8) (2017) 3571–3584.

[16] Z. Zhou, P. Liu, J. Feng, Y. Zhang, S. Mumtaz, J. Rodriguez, Computation

resource allocation and task assignment optimization in vehicular fog com-

puting: A contract-matching approach, IEEE Transactions on Vehicular555

Technology 68 (4) (2019) 3113–3125.

[17] Y.-H. Kao, B. Krishnamachari, Optimizing mobile computational offload-

ing with delay constraints, in: 2014 IEEE Global Communications Confer-

ence, IEEE, 2014, pp. 2289–2294.

[18] T. Wang, X. Wei, C. Tang, J. Fan, Efficient multi-tasks scheduling al-560

gorithm in mobile cloud computing with time constraints, Peer-to-Peer

Networking and Applications 11 (4) (2018) 793–807.

[19] F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog computing and its role

in the internet of things, in: Proceedings of the first edition of the MCC

workshop on Mobile cloud computing, ACM, 2012, pp. 13–16.565

[20] S. P. Ahuja, N. Wheeler, Architecture of fog-enabled and cloud-enhanced

internet of things applications, International Journal of Cloud Applications

and Computing (IJCAC) 10 (1) (2020) 1–10.

33



[21] C. Puliafito, D. M. Gonçalves, M. M. Lopes, L. L. Martins, E. Madeira,

E. Mingozzi, O. Rana, L. F. Bittencourt, Mobfogsim: Simulation of mo-570

bility and migration for fog computing, Simulation Modelling Practice and

Theory 101 (2020) 102062.

[22] H. Wang, T. Liu, B. Kim, C.-W. Lin, S. Shiraishi, J. Xie, Z. Han, Architec-

tural design alternatives based on cloud/edge/fog computing for connected

vehicles, IEEE Communications Surveys & Tutorials 22 (4) (2020) 2349–575

2377.

[23] Z. Javed, W. Mahmood, A survey based study on fog computing awareness,

International Journal of Information Technology and Computer Science

(IJITCS) 13 (2) (2021) 49–62.

[24] G. Carvalho, B. Cabral, V. Pereira, J. Bernardino, Computation offload-580

ing in edge computing environments using artificial intelligence techniques,

Engineering Applications of Artificial Intelligence 95 (2020) 103840.

[25] H. Flores, X. Su, V. Kostakos, A. Y. Ding, P. Nurmi, S. Tarkoma, P. Hui,

Y. Li, Large-scale offloading in the internet of things, in: Pervasive Com-

puting and Communications Workshops (PerCom Workshops), 2017 IEEE585

International Conference on, IEEE, 2017, pp. 479–484.

[26] F. Gu, J. Niu, Z. Qi, M. Atiquzzaman, Partitioning and offloading in smart

mobile devices for mobile cloud computing: State of the art and future

directions, Journal of Network and Computer Applications 119 (2018) 83–

96.590

[27] Z. Li, C. Wang, R. Xu, Computation offloading to save energy on handheld

devices: a partition scheme, in: Proceedings of the 2001 international con-

ference on Compilers, architecture, and synthesis for embedded systems,

2001, pp. 238–246.

[28] M. Gao, R. Shen, L. Shi, W. Qi, J. Li, Y. Li, Task partitioning and offload-595

34



ing in dnn-task enabled mobile edge computing networks, IEEE Transac-

tions on Mobile Computing.

[29] J. Liu, Q. Zhang, Adaptive task partitioning at local device or remote edge

server for offloading in mec, in: 2020 IEEE Wireless Communications and

Networking Conference (WCNC), IEEE, 2020, pp. 1–6.600

[30] S. Singh, Optimize cloud computations using edge computing, in: 2017

International Conference on Big Data, IoT and Data Science (BID), IEEE,

2017, pp. 49–53.

[31] K. Akherfi, M. Gerndt, H. Harroud, Mobile cloud computing for computa-

tion offloading: Issues and challenges, Applied computing and informatics605

14 (1) (2018) 1–16.

[32] G. Mitsis, P. A. Apostolopoulos, E. E. Tsiropoulou, S. Papavassiliou, In-

telligent dynamic data offloading in a competitive mobile edge computing

market, Future Internet 11 (5) (2019) 118.

[33] X.-S. Yang, Nature-inspired optimization algorithms: challenges and open610

problems, Journal of Computational Science (2020) 101104.

[34] K. Chaudhari, A. Thakkar, Travelling salesman problem: An empirical

comparison between aco, pso, abc, fa and ga, in: Emerging Research

in Computing, Information, Communication and Applications, Springer,

2019, pp. 397–405.615

[35] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of

ICNN’95-International Conference on Neural Networks, Vol. 4, IEEE, 1995,

pp. 1942–1948.

[36] P. K. Tripathi, S. Bandyopadhyay, S. K. Pal, Multi-objective particle swarm

optimization with time variant inertia and acceleration coefficients, Infor-620

mation sciences 177 (22) (2007) 5033–5049.

35



[37] W. Bin, P. Qinke, Z. Jing, C. Xiao, A binary particle swarm optimization

algorithm inspired by multi-level organizational learning behavior, Euro-

pean Journal of Operational Research 219 (2) (2012) 224–233.

[38] M. Rosendo, A. Pozo, Applying a discrete particle swarm optimization algo-625

rithm to combinatorial problems, in: 2010 Eleventh Brazilian Symposium

on Neural Networks, IEEE, 2010, pp. 235–240.

[39] I. K. Gupta, S. Shakil, S. Shakil, A hybrid ga-pso algorithm to solve trav-

eling salesman problem, in: Computational Intelligence: Theories, Appli-

cations and Future Directions-Volume I, Springer, 2019, pp. 453–462.630

[40] A. W. Mohemmed, N. C. Sahoo, T. K. Geok, Solving shortest path problem

using particle swarm optimization, Applied Soft Computing 8 (4) (2008)

1643–1653.

[41] H. Huang, Z. Hao, Particle swarm optimization algorithm for transporta-

tion problems, Particle swarm optimization, ed. Aleksandar Lazinica, In-635

Tech (2009) 275–290.

[42] J. L. Pierobom, M. R. Delgado, C. A. A. Kaestner, Particle swarm opti-

mization applied to task assignment problem, ChemBioChem (2016) 1–8.

[43] H. Rafique, M. A. Shah, S. U. Islam, T. Maqsood, S. Khan, C. Maple, A

novel bio-inspired hybrid algorithm (nbiha) for efficient resource manage-640

ment in fog computing, IEEE Access 7 (2019) 115760–115773.

[44] U. Saleem, Y. Liu, S. Jangsher, Y. Li, Performance guaranteed partial of-

floading for mobile edge computing, in: 2018 IEEE Global Communications

Conference (GLOBECOM), IEEE, 2018, pp. 1–6.

[45] L. Li, X. Zhang, K. Liu, F. Jiang, J. Peng, An energy-aware task offloading645

mechanism in multiuser mobile-edge cloud computing, Mobile Information

Systems 2018.

36



[46] P. Zhao, H. Tian, C. Qin, G. Nie, Energy-saving offloading by jointly allo-

cating radio and computational resources for mobile edge computing, IEEE

Access 5 (2017) 11255–11268.650

[47] S. Misra, N. Saha, Detour: Dynamic task offloading in software-defined fog

for iot applications, IEEE Journal on Selected Areas in Communications

37 (5) (2019) 1159–1166.

[48] B. Zhou, A. V. Dastjerdi, R. N. Calheiros, R. Buyya, An online algorithm

for task offloading in heterogeneous mobile clouds, ACM Transactions on655

Internet Technology (TOIT) 18 (2) (2018) 1–25.

[49] A. Kishor, C. Chakarbarty, Task offloading in fog computing for using smart

ant colony optimization, Wireless Personal Communications (2021) 1–22.

[50] M. Keshavarznejad, M. H. Rezvani, S. Adabi, Delay-aware optimization

of energy consumption for task offloading in fog environments using meta-660

heuristic algorithms, Cluster Computing (2021) 1–29.

[51] J. Wang, J. Hu, G. Min, A. Y. Zomaya, N. Georgalas, Fast adaptive task

offloading in edge computing based on meta reinforcement learning, IEEE

Transactions on Parallel and Distributed Systems 32 (1) (2020) 242–253.

[52] L. Huang, X. Feng, C. Zhang, L. Qian, Y. Wu, Deep reinforcement learning-665

based joint task offloading and bandwidth allocation for multi-user mobile

edge computing, Digital Communications and Networks 5 (1) (2019) 10–17.

[53] D. S. Rani, M. Pounambal, Deep learning based dynamic task offloading

in mobile cloudlet environments, Evolutionary Intelligence (2019) 1–9.

[54] J. Liu, X. Wang, S. Shen, G. Yue, S. Yu, M. Li, A bayesian q-learning game670

for dependable task offloading against ddos attacks in sensor edge cloud,

IEEE Internet of Things Journal 8 (9) (2020) 7546–7561.

[55] J. Wang, W. Wu, Z. Liao, R. S. Sherratt, G.-J. Kim, O. Alfarraj, A. Alzubi,

A. Tolba, A probability preferred priori offloading mechanism in mobile

edge computing, IEEE Access 8 (2020) 39758–39767.675

37



[56] N. Zhang, S. Guo, Y. Dong, D. Liu, Joint task offloading and data

caching in mobile edge computing networks, Computer Networks 182 (2020)

107446.

[57] X. Zhang, R. Zhou, Z. Zhou, J. C. Lui, Z. Li, An online learning-based

task offloading framework for 5g small cell networks, in: 49th International680

Conference on Parallel Processing-ICPP, 2020, pp. 1–11.

[58] M. Min, D. Xu, L. Xiao, Y. Tang, D. Wu, Learning-based computa-

tion offloading for iot devices with energy harvesting, arXiv preprint

arXiv:1712.08768.

[59] L. Belem Pacheco, E. Pelinson Alchieri, P. Mendez Barreto, Device-based685

security to improve user privacy in the internet of things, Sensors 18 (8)

(2018) 2664.

[60] Z. Wang, J. Zhang, S. Yang, An improved particle swarm optimization algo-

rithm for dynamic job shop scheduling problems with random job arrivals,

Swarm and Evolutionary Computation 51 (2019) 100594.690

[61] M. A. A. Aziz, M. N. Taib, N. M. Hussin, An improved event selection

technique in a modified pso algorithm to solve class scheduling problems,

in: 2009 IEEE Symposium on Industrial Electronics & Applications, Vol. 1,

IEEE, 2009, pp. 203–208.

[62] N. Delgarm, B. Sajadi, F. Kowsary, S. Delgarm, Multi-objective optimiza-695

tion of the building energy performance: A simulation-based approach by

means of particle swarm optimization (pso), Applied energy 170 (2016)

293–303.

[63] L.-b. Zhang, C.-g. Zhou, M. Ma, X.-h. Liu, Solutions of multi-objective

optimization problems based on particle swarm optimization, Journal of700

computer research and development 7 (41) (2004) 7.

[64] H. S. Urade, R. Patel, Dynamic particle swarm optimization to solve multi-

objective optimization problem, Procedia Technology 6 (2012) 283–290.

38



[65] S. V. Margariti, V. V. Dimakopoulos, G. Tsoumanis, Modeling and sim-

ulation tools for fog computing—a comprehensive survey from a cost per-705

spective, Future Internet 12 (5) (2020) 89.

39


	Introduction
	Review of related works 
	Offloading in the fog computing ecosystem
	offloading Decision
	 Application task partitioning
	Preparation

	Nature inspired algorithm for computational offloading and related problems
	Classes of computational offloading strategies

	Formal problem formulation 
	Network model
	Problem statement
	Formation of optimization framework

	The modified Dynamic PSO for computational offloading
	Traditional Dynamic Particle Swarm Optimisation algorithm
	Dynamic Task allocation algorithm

	Comparative study between SiPSO and mDyPSO
	Experimental environment and setting
	System configuration
	simulation parameters

	Evaluation parameter
	Application latency for mDyPSO as compared SiPSO
	Network Usage for mDyPSO as compared SiPSO
	Energy consumption for mDyPSO as compared to SiPSO 

	Conclusion

